Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Iron (Fe) availability impacts marine primary productivity, potentially influencing the efficiency of the biological carbon pump. Stable Fe isotope analysis has emerged as a tool to understand how Fe is sourced and cycled in the water column; however its application to sediment records is complicated by overlapping isotope signatures of different sources and uncertainties in establishing chronologies. To overcome these challenges, we integrate Fe and osmium isotope measurements with multi‐element geochemical analysis and statistical modeling. We apply this approach to reconstruct the history of Fe delivery to the South Pacific from three pelagic clay sequences spanning 93 million years. Our analysis reveals five principal Fe sources—dust, distal background, two distinct hydrothermal inputs, and a magnesium‐rich volcanic ash. Initially, hydrothermal inputs dominated Fe deposition, but as the sites migrated away from their respective mid‐ocean ridges, other sources became prominent. Notably, from 66 to 40 million years ago (Ma), distal background Fe was the primary source before a shift to increasing dust dominance around 30 Ma. This transition implies that Fe in South Pacific seawater has been dust‐dominated since ≈30 Ma, despite extremely low dust deposition rates today. We speculate that the shift to episodic and low Fe fluxes in the South Pacific and Southern Ocean over the Cenozoic helped shape an ecological niche that favored phytoplankton that adapted to these conditions, such as diatoms. Our analysis highlights how Fe delivery to the ocean is driven by large‐scale tectonic and climatic shifts, while also influencing climate through its integral role in marine phytoplankton and Earth's biogeochemical cycles.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract. Barium is widely used as a proxy for dissolved silicon and particulateorganic carbon fluxes in seawater. However, these proxy applications arelimited by insufficient knowledge of the dissolved distribution of Ba([Ba]). For example, there is significant spatial variability in thebarium–silicon relationship, and ocean chemistry may influence sedimentaryBa preservation. To help address these issues, we developed 4095 models forpredicting [Ba] using Gaussian process regression machine learning. Thesemodels were trained to predict [Ba] from standard oceanographic observationsusing GEOTRACES data from the Arctic, Atlantic, Pacific, and Southernoceans. Trained models were then validated by comparing predictions againstwithheld [Ba] data from the Indian Ocean. We find that a model trained usingdepth, temperature, and salinity, as well as dissolved dioxygen, phosphate,nitrate, and silicate, can accurately predict [Ba] in the Indian Ocean with amean absolute percentage deviation of 6.0 %. We use this model tosimulate [Ba] on a global basis using these same seven predictors in theWorld Ocean Atlas. The resulting [Ba] distribution constrains the Ba budgetof the ocean to 122(±7) × 1012 mol and revealsoceanographically consistent variability in the barium–silicon relationship. We then calculate the saturation state of seawater with respect to barite. This calculation reveals systematic spatial and vertical variations in marine barite saturation and shows that the ocean below 1000 m is at equilibrium with respect tobarite. We describe a number of possible applications for our model outputs, ranging from use in mechanistic biogeochemical models to paleoproxy calibration. Ourapproach demonstrates the utility of machine learning in accurately simulatingthe distributions of tracers in the sea and provides a framework that couldbe extended to other trace elements. Our model, the data used in training and validation, and global outputs are available in Horner and Mete (2023, https://doi.org/10.26008/1912/bco-dmo.885506.2).more » « less
-
The Line Islands Ridge (LIR), located south of the Hawaiian Islands between 7°N and 1°S, is one of the few large central Pacific regions shallower than the regional carbonate compensation depth. Thick sequences of carbonate sediments have accumulated around the LIR despite it being located in the sediment-starved central tropical Pacific. The LIR is an important source of carbonates to the surrounding region and deposition around the LIR has expanded the equatorial Pacific carbonate sediment tongue by about 5% of its total area. Furthermore, sediments on the ridge are potentially important paleoceanographic archives. A recent survey at the crest of the LIR finds evidence for high current activity, significant erosion, but overall net sediment deposition. Currents are strong enough to form sediment waves and lee drifts in the Palmyra Basin, at the northern terminus of the LIR. Sediments along the LIR are pelagic foraminiferal sands that are easily eroded and flow out into the surrounding abyssal plain in active submarine channel systems. As channels migrate, pelagic sediments fill in the abandoned channel arms. Despite significant sediment losses from the top of the ridge, 1.3 km of sediment has accumulated in the upper Palmyra Basin over basement formed 68 to 85 million years ago (Ma). Late Neogene erosion may be more extensive than earlier erosion cycles, in response to reduced sediment production as the Palmyra Basin exited the high productivity equatorial latitudes. Sediments with good stratigraphic order needed for paleoceanographic study are limited in this dynamic sedimentary environment, but can be found with proper survey.more » « less
-
Abstract Much uncertainty exists about the state of the oceanic and atmospheric circulation in the tropical Pacific over the last glacial cycle. Studies have been hampered by the fact that sediment cores suitable for study were concentrated in the western and eastern parts of the tropical Pacific, with little information from the central tropical Pacific. Here we present information from a suite of sediment cores collected from the Line Islands Ridge in the central tropical Pacific, which show sedimentation rates and stratigraphies suitable for paleoceanographic investigations. Based on the radiocarbon and oxygen isotope measurements on the planktonic foraminiferaGlobigerinoides ruber, we construct preliminary age models for selected cores and show that the gradient in the oxygen isotope ratio ofG. ruberbetween the equator and 8°N is enhanced during glacial stages relative to interglacial stages. This stronger gradient could reflect enhanced equatorial cooling (perhaps reflecting a stronger Walker circulation) or an enhanced salinity gradient (perhaps reflecting increased rainfall in the central tropical Pacific).more » « less
An official website of the United States government
